
Learning to Recognize Objects in Images

Using Anisotropic Nonparametric Kernels

Douglas SUMMERS-STAY and Yiannis ALOIMONOS

University of Maryland, College Park

Abstract. We present a system that makes use of image context to perform pixel-

level segmentation for many object classes simultaneously. The system finds
approximate nearest neighbors from the training set for a (biologically plausible)

feature patch surrounding each pixel. It then uses locally adaptive anisotropic

Gaussian kernels to find the shape of the class manifolds embedded in the high-
dimensional space of the feature patches, in order to find the most likely label for

the pixel. An iterative technique allows the system to make use of scene context
information to refine its classification. Like humans, the system is able to quickly

make use of new information without going through a lengthy training phase. The

system provides insight into a possible mechanism for infants to quickly learn to
recognize all of the classes they are presented with simultaneously, rather than

having to be trained explicitly on a few classes like standard image classification

algorithms.

Keywords. Object Recognition, Anisotropic, Non-Parametric.

Introduction

When we look at the world, we are able to classify many things within the field of view

quickly, simultaneously, and effortlessly. Most models of attention assume that when

we first look at a scene, the brain pulls out only simple features such as contrast,

information density, saturation, creating what is known as a ―saliency map.‖ These

features are thought to provide cues for where to fixate in an image, and that objects are

only recognized when they are the center of attention indicated by the direction of gaze.

A few recent works have shown a situation more complicated and interesting. The

earlier experiments in this area simply asked participants to look at a scene and

describe what they saw. In this case, the location of fixations was predicted pretty well

by the low-level features described above. When participants are asked instead to look

for a particular item in a natural image, however, the first few fixations were better

predicted by the location of the object to be found [1]. This seems to indicate that from

the first glance at a scene, before the brain would have time to do anything that requires

anything as slow as conscious reasoning or fitting of a complex model, it is already

able to classify many objects in a scene correctly and in parallel. Only after this process

is completed do we fixate on the object of interest in order to begin these slower and

more accurate processes which require a focused attention.

Our system is an attempt to model this aspect of pre-attentive vision. In brief, we

 collect biologically plausible rich features, called ―prototypes‖ from

training images with known labels

 use these to classify all features on these same images

 learn a multi-layer model that can refine these estimates using

context

 apply the multi-layer model to test images

1. Object Recognition in the Brain

The following is a sketch of the current consensus about the process of object

recognition in primates. The data from the eyes is streamed along the ventral visual

pathway beginning in the primary visual cortex (V1) and ending in the inferotemporal

cortex (IT). This in turn informs the prefrontal cortex, where the information can be

used for taking action. The entire process from V1 to IT only takes about 30 ms in

humans. [2] (Information about location in the image also begins in V1 but follows a

different path. We do not attempt to imitate this behavior in our model.)

The first cells along the pathway, the simple (S1) cells, are similar to local Gabor filters

at a particular orientation and scale. Complex (C1) cells integrate the information from

a small number of these S1 cells, responding to oriented edges over a wider range of

locations and scales. The input of multiple C1 cells, in turn, are used to create more and

more complex filters that respond to particular arrangements of multiple edges over

larger and larger areas of the image (S2 and C2 cells.) [3] Cells at the end of this

process act like radial basis functions, responding strongly to image regions that

contain the pattern of interest, and falling off in Gaussian fashion as the similarity

between the input patch and the prototype decreases. [4]

Up to this point the process is largely feed forward. But within the inferotemporal

cortex, these prototypes receive feedback from the prefrontal cortex [5], influencing the

interpretation of inputs so that ambiguous areas are resolved into familiar objects

through association with the immediate context. For example, a distant brown blob

might be interpreted as a shoe if it is found at the bottom of a leg, or as hair if found at

the top of a head.

For some cells in the IT cortex, the visual similarity between inputs is less important

than semantic similarity. Cells that respond strongly to frontal views of faces, for

example, respond partially to profiles of faces, even though their appearance is not

similar. [6]

2. Object Recognition by Our System

Our system follows this natural model closely for the first stages of processing,

approximating the action of S1, C1, S2, and C2 cells. (This part of the system uses a

variation on the HMAX features described in [7].) Randomly selsected 64 x 64 patches

of the training images are fed into this software, and the results are 256 dimensional

vectors which encode much of the shape information in the patches in a compact way.

These vectors (which we will call ‗prototypes‘) are associated with training labels,

giving the classification of the object at the center of the patch.

A sliding window is applied, and the approximate nearest neighbors to each

windowed region from among these prototypes are returned. What has been described

so far is similar to [8]. We extend the model beyond this with multiple layers of

prototypes that do not merely classify an image as a whole, but create a classification

map that shows which regions of the image belong to which class.

For each sampled point in the images, we find the most similar prototypes and

average them, making use of a rich weighting scheme (discussed later.) Using the

correct label maps for these training images, the system learns what it ought to produce

when a particular pattern of label maps is generated. We do this by creating a new set

of prototypes in a second layer, which take as input not just a patch of the original

image, but also the associated patch from the estimated label map created by the first

layer. This process can be repeated several times.

When testing images are presented, the exact same process is followed, except that

new prototypes are not collected. Instead, each layer of prototypes create during

training is applied in sequence, making use of the estimated label map generated by the

previous layer.

2.1. Training

1. A set of training images are collected.

2. Corresponding label maps are created.

3. For each layer,

4. Features are collected at many random locations within these training pairs.

5. An index is created to enable fast searching among these features.

6. For each training image,

7. A feature is collected at each pixel in the image.

8. A set of similar features are found.

9. A weighted average of the labels of these features is found.

10. An estimated label map is created from these labels.

2.2. Testing

1. For each test image

2. For each layer,

3. Follow steps 7-10 above.

Though we have used biological language to describe the process in this paper, the

problem can also be formulated as a straightforward statistical inference, as described

in [9]. Let a training image be represented by the vector X = (x1, ..., xn). Each of the xi

represents a single pixel. Each training image comes with a corresponding ground truth

map Y = (y1, ..., yn) where yi {1..K} is the label for each pixel i, and an estimated

probability of detection map W = (w1, ..., wn) where all the wi are initially set to the

same value. We would like to learn to estimate p(yi |X and W). Since this is too large a

space to attempt to learn directly (a megapixel image would result in a million

dimensional space), we instead learn p(yi |V⊂ (X and W)), where V is a subset of X and

W consisting of a patch of pixels surrounding xi. and a patch surrounding wi.

Once we have learned p(yi |V), we apply it to the patch surrounding each pixel xi in

each training image X. In this way, we create an estimated label map W for each of the

training images. In this map W, some pixels will be correctly labeled while their

neighbors are incorrectly labeled. Since we have the truth map Y for each image, we

can learn, for example, that a pixel wi surrounded by pixels belonging to a particular

class K is more likely to itself belong to that class. Moreover, by using both the

estimated map W and the original image X together as one half of the training pair, we

can do a better job of estimating yi than if we only had the original image X. This

process of iteratively creating new estimated detection maps continues until the maps

no longer improve.

The sharing of context information between neighboring pixels introduced in this

way is comparable to how belief propagation networks or conditional random fields

(CRFs) have probabilities defined for sharing probabilities between neighbors.

3. Anisotropic Interpolation

While the prototypes are a compressed representation of the patches they are

derived from (a 64 x 64 patch with 4096 pixels is represented by only 256 values) they

are still too high dimensional for approximate nearest neighbor algorithms to work well.

The 100 nearest neighbors will contain some correct matches but also many incorrect

matches. The usual way to weight the neighbors is with a Gaussian function on the

distance from the point to be estimated. Unfortunately, in high dimensional spaces, all

points are approximately the same distance apart. This is one aspect of the ‗curse of

dimensionality.‘ However, the relevant data lies on a lower dimensional manifold

embedded in this 256 dimensional space. Because of this, using adaptive anisotropic

kernels gives a substantial improvement over the standard isotropic Gaussians.

Figure 1. Isotropic Gaussian kernels (left) and anisotropic Gaussian kernels (right) on the same ten points.

The advantage can be seen in the following illustration. Ten points forming an

expanding spiral. The points represent prototypes. The spiral is 2-dimensional for

illustrative purposes—the actual prototypes are points in a 256 dimensional space. In

the first illustration, the weights of each prototype are given by an isotropic Gaussian

function. When the prototypes are very similar, the points are close together, and the

interpolation between them is reasonably accurate. However, when they are widely

spaced, each prototype lies in its own island. Test features which are very similar to

one particular prototype will be classified correctly, but ones that lie halfway between

two prototypes will not be.

In the second illustration, anisotropic kernels are used. These are elongated in the

direction of neighboring points of the same class. In this case, the points form a nearly

connected spiral, correctly estimating the shape of the underlying manifold. This effect

is even more pronounced in higher dimensional spaces where the weight is

concentrated in one direction among hundreds, rather than one direction out of two in

the illustration.

The methods we used to estimate the shape of these kernels is not biologically

plausible, relying on taking the inverse of a covariance matrix. (See [10] for details and

formulae for these anisotropic kernels.) The shape of these kernels may be formed by

interaction among similar prototypes gradually ―reaching out‖ towards their neighbors

in the same process that allows redundant prototypes to be gradually eliminated in the

learning process. This, however, is purely speculative at present.

4. Results

We tested the application on the Weizmann horse database [11]. This database has

large variations in the appearance, lighting, and pose of the horses and variations in

background appearance. The system was trained on 300 of the images and tested on

the remaining 27 (See Figure 2.) 500,000 prototypes were collected at random from the

training images for each of the five layers. The system used 64 x 64 patches, and

created 256 dimensional prototype vectors.

The system was able to not only detect the presence of horses, but correctly segment

many of the limbs in 24 of the 27 images. Detection is made a little easier by the fact

that each image contains only one horse, and there are no partial occlusions. However,

due to the windowed nature of the detection algorithm, these factors would not be

expected to be very problematic for this system. In addition, the horses are all from

roughly the same angle. This means fewer prototypes are needed to learn the class than

would otherwise be the case.

Figure 2. Test set. Images (left) and corresponding detection maps (right).

5. Conclusion and Future Directions

This seems to be a promising approach to forming rough segmentations of the

classes of objects in a scene prior to fixation and segmentation. We have begun

experiments on including stereo and motion information, to learn to recognize 3D

objects and motions as well as image classes.

An advantage of this system is that it requires no more resources to learn many classes

from a set of training images than it does to learn just two from the same set. Even

classes not explicitly specified, such as head or limb detectors in the case of the horse

database, are recognized as being visually and semantically similar implicitly.

Labeling a single horse leg, for example, could bring up a cluster of similar horse legs

because all would activate the same prototypes. In this way, the system is learning

something about everything in the training images, even when it doesn‘t have a name

for the groups it recognizes as similar. In this way it could combine supervised with

unsupervised learning.

One other interesting possibility is to replace the mapping to discrete labels with a

mapping into some kind of semantic space. Objects recognized as being semantically

associated would be able to influence the classification of nearby objects in the scene

(the presence of a spoon and plate might help to resolve an ambiguous detection as a

cup.)

References

[1] W. Einhäuser, M. Spain, and P. Perona, Objects predict fixations better than early saliency. Journal of

Vision, 8(14):18, 1–26, 2008

[2] JJ Foxe, GV Simpson. Flow of Activation from V1 to frontal cortex in humans. Experimental Brain
Research, 2002.

[3] J Mutch, DG Lowe. Multiclass object recognition with sparse, localized features. CVPR 2006

[4] T. Serre, L. Wolf, T. Poggio. Object recognition with features inspired by visual cortex. CVPR 2005.
[5] EK Miller, CA Erickson, R Desimone. Neural mechanisms of visual working memory in prefrontal

cortex of the macaque. Journal of Neuroscience, 1996.

[6] R Desimone, TD Albright, CG Gross. Stimulus selective properties of inferior temporal neurons in the
macaque. Journal of Neuroscience, Vol 4, 1984.

[7] M Reisenhuber, T Poggio. Heirarchial models of object recognition in cortex. Nature Neuroscience 2,

1999.
[8] M Reisenhuber, T Poggio. Heirarchial models of object recognition in cortex. Nature Neuroscience 2,

1999.

[9] Tu, Zhuowen. Auto-context and Its Application to High-level Vision Tasks. Proc. of IEEE Computer
Vision and Pattern Recognition (CVPR), 2008.

[10] Thomas Brox, Bodo Rosenhahn, Daniel Cremers and Hans-Peter Seidel. Nonparametric Density

Estimation with Adaptive, Anisotropic Kernels for Human Motion Tracking. Lecture Notes in
Computer Science, 2007.

[11] Weizmann horse database can be found at http://www.msri.org/people/members/eranb/

[12] R. Haralick, K. Shanmugam, and I. Dinstein. Texture Features for Image Classification. IEEE
Transactions on Systems, Man, and Cybernetics, 3(6), 1973.

[13] H. Seo, and P. Milanfar. Training-free, Generic Object Detection using Locally Adaptive Regression
Kernels. Accepted for publication in IEEE Trans. on Pattern Analysis and Machine Intelligence, June

2009

[14] Wu, B., & Nevatia, R.. Detection and Segmentation of Multiple, Partially Occluded Objects by
Grouping, Merging, Assigning Part Detection Responses. Int J Comput Vis (2009) 82: 185–204

[15] L. Zhao and L. S. Davis. Closely Coupled Object Detection and Segmentation. ICCV, 2005.

[16] J.Winn and J. Shotton. The Layout Consistent Random Field for Recognizing and Segmenting Partially
Occluded Objects. CVPR, 2006.

[17] Wu, B., & Nevatia, R.. Detection and Segmentation of Multiple, Partially Occluded Objects by

Grouping, Merging, Assigning Part Detection Responses. Int J Comput Vis (2009) 82: 185–204

 [12] A. Hollingworth and J.M. Henderson, Accurate visual memory for previously attended objects in

natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28: 113-136,

2002.

[13] A. Hollingworth, Constructing visual representations of natural scenes: The roles of short- and long-

term visual memory. Journal of Experimental Psychology: Human Perception and Performance, 30: 519-

537, 2004.

[14] R.A. Rensink, The dynamic representation of scenes. Visual Cognition, 7:17-42, 2000.

